TM65ANZ Mid Level Calculation

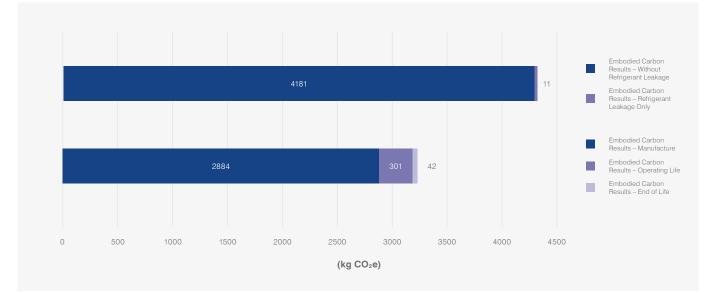
HOT WATER HEAT PUMP – EMBODIED CARBON

ecodanopro

Assessment Date: **28th June 2023** Assessor / Organisation: **Mitsubishi Electric** Contact: **compliance@BDT.co.nz** Valid Country: **New Zealand**

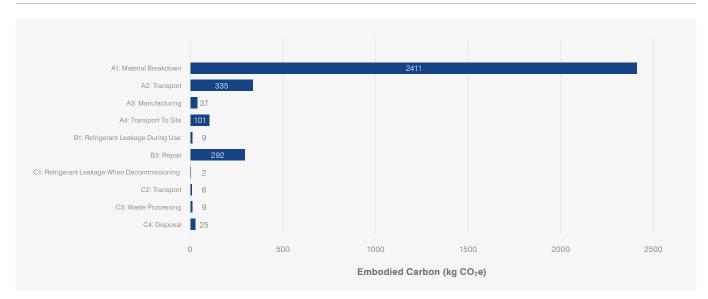
QAHV-N560YA-HPB

The QAHV is a 40kW monobloc air-to-water heat pump that utilises low Global Warming Potential and zero ozone depleting CO_2 (R744) refrigerant for the production of potable hot water.


Specifically designed to produce high flow temperature up to 90°C, the QAHV Hot Water Heat Pump is suitable for commercial and industrial applications.

Calculation of product embodied carbon under TM65 ANZ local addendum by CIBSE.

Embodied Carbon Result with 'Mid-level TM65 Calculation' Method Total:



PRODUCT INFORMATION		
Type of product	ATW heat pump	
Equipment capacity	40kW	
Product weight	420kg	
Material breakdown for at least 95% of product weight	Yes	
Product service life	15 years	
Type of refrigerant	R744 (CO ₂)	
Refrigerant charge	6.5kg	
Country of origin	Japan	
Product complexity	Category 3: High	

Results Breakdown

Summary of Embodied Carbon Results (kg CO2e)

A1 – C4 (Excluding B1 and C1)	3216
A1 – C4 with Buffer Factor (Excluding B1 and C1)	4181
B1: Refrigerant Leakage During Life + C1: Refrigerant Leakage at End of Life	11

Calculation Assumptions

A1: Material Carbon Coefficient Source	TM65 ANZ Table 2.1
A4: Transport to site distances	10,000km by sea, 300km by road (TM65 ANZ assumption)
B1: Refrigerant annual leakage rate	9% (TM65 ANZ assumption)
B3: Materials replaced as part of repair	10% (TM65 ANZ assumption)
C1: End of life leakage rate	30% (TM65 ANZ assumption)
C4: Percentage of unit being recycled	70% (TM65 ANZ assumption)

Note: Data is correct at time of document publication and may be subject to vary based on manufacturing and shipping variations on a case by case basis.

For more information please visit our website or call our Applied Products Team. www.mitsubishi-electric.co.nz | 0800 784 382

PUBLISHED NOV 2023

PLEASE LOOK AFTER THE ENVIRONMENT AND RECYCLE

Black Diamond Technologies Limited

Exclusive New Zealand Partner Since 1981

